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Abstract. A large deviation technique is used to calculate the microcanonical entropy function s(v, m)
of the mean-field ϕ4-model as a function of the potential energy v and the magnetization m. As in the
canonical ensemble, a continuous phase transition is found. An analytical expression is obtained for the
critical energy vc(J) as a function of the coupling parameter J .

PACS. 05.70.Fh Phase transitions: general studies – 64.60.Cn Order-disorder transformations; statistical
mechanics of model systems – 75.10.-b General theory and models of magnetic ordering

1 Introduction

Statistical physics is the branch of theoretical physics
which provides a microscopic basis for the macroscopic
theory of thermodynamics. Equilibrium statistical physics
makes use of statistical ensembles, like the microcanonical
or the canonical one. The basic thermodynamic function
in the microcanonical ensemble is the entropy s(v, m, . . . )
as a function of some energy v, magnetization m, and/or
further arguments, whereas in the canonical ensemble this
role is played by the canonical free energy f(T, h, . . . ) as a
function of the temperature T , a magnetic field h, and/or
further arguments. The computation of thermodynamic
functions from statistical mechanics is a formidable, in
most cases impossible task in general, but, as a rule of
thumb, it is more difficult in the microcanonical ensem-
ble. This is the reason why, although the microcanonical
ensemble is the most fundamental one of the statistical en-
sembles, one often resorts to the calculation of the canon-
ical free energy f instead. This is a reasonable way to
proceed, as long as both options yield equivalent results.
If this is not the case, one speaks of ensemble nonequiva-
lence, and the occurrence of non-concave microcanonical
entropy functions in systems with long-range interactions
is a hallmark of this situation. Then, unlike in standard
thermodynamics where the concavity of the entropy is as-
sumed, the entropy s cannot be obtained from the free
energy f by means of a Legendre transform.

Only in recent years the community of statistical physi-
cists became aware that large deviation theory, a branch of
probability theory, is a powerful tool to compute, among
others, microcanonical quantities, at least for some classes
of systems (see [1] for a mathematical treatise on large de-
viation theory with applications to statistical mechanics,
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or [2] for a less formal presentation of the subject). Ex-
plicit calculations of microcanonical quantities by means
of large deviation theory can be found in [3] for some mod-
els of physical interest (the infinite range Potts model, the
Hamiltonian mean-field model, and the Colson-Bonifacio
model of a free electron laser).

We start by briefly reviewing some results of large devi-
ation theory and their relation to statistical mechanics in
Section 2. In Section 3, the microcanonical entropy of the
ϕ4-model without interaction is calculated using large de-
viation theory. From this result, the entropy of the mean-
field ϕ4-model in the presence of interactions is deduced.
The physical implications of the result are discussed, fol-
lowed by some conclusions in Section 4.

2 Large deviation theory, a tool in statistical
mechanics

This section contains a brief, informal review of some
statements of large deviation theory and how they can be
applied to statistical mechanics. Consider a sequence of
independent, identically distributed (i.i.d.) random vari-
ables Xi ∈ �

d with probability distribution p(X), the
empirical mean SN = X1+···+XN

N , and the mean (or ex-
pectation) value µ := �[X ] :=

∫
dX X p(X). The law

of large numbers tells us that, in the limit of large N ,
the probability � of an event with SN �= µ converges
to zero. The form of this convergence is the central issue
of large deviation theory, thus allowing predictions about
very unlikely events. Under some prerequisites on the ran-
dom variables Xi, Cramér [4] found that, in the limit of
large N , the convergence is of exponentially decaying form
in N ,

−I(x) = lim
N→∞

1
N

ln�(SN ∈ [x, x + dx]). (1)
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The so-called rate function I(x) depends on the value x
the empirical mean has to meet. Comparing equation (1)
to the definition of the Boltzmann entropy,

s(x) = lim
N→∞

1
N

ln
∫

�Nn

dXN δ
[
x − SN

(
XN

)]
, (2)

we see that s(x) is identical to −I(x) up to a physi-
cally irrelevant additive constant. Under suitable condi-
tions on Xi, large deviation theory gives an instruction
how to derive the rate function (and therefore the micro-
canonical entropy):

s(x) = −(tx, x) + ln�[e(tx,x)], (3)

where (, ) denotes the usual scalar product and tx(x) is
obtained by solving the conditional equation

x�[e(tx,X)] = �
[
X e(tx,X)

]
. (4)

3 Application to the mean-field ϕ4-model

The mean-field ϕ4-model we want to study is character-
ized by a potential energy function of the form

V (ϕ) = − J

2N

(
N∑

i=1

ϕi

)2

+
N∑

i=1

(
1
4

ϕ4
i −

1
2

ϕ2
i

)

, (5)

where N is the number of particles, J is a coupling con-
stant, and ϕ = (ϕ1, · · · , ϕN ) denotes the position in con-
figuration space. Our aim is to compute the microcanoni-
cal configurational entropy of this model.

3.1 The ϕ4-model without interaction

First, we look at the ϕ4-model without interaction,
where N particles move independently in an on-site po-
tential of the form 1

4 ϕ4
i − 1

2 ϕ2
i . The potential energy is

Vos(ϕ) =
N∑

i=1

(
1
4

ϕ4
i −

1
2

ϕ2
i

)

. (6)

The first step in calculating the configurational entropy is
to translate our problem into the language of the previous
section. Considering the coordinates ϕi ∈ � as random
variables with flat distribution on some finite interval,

p(ϕ) =

⎧
⎨

⎩

1
2ϕc

for ϕ ∈ [−ϕc, ϕc],

0 else,
(7)

other random variables

Xi =
(

1
4

ϕ4
i −

1
2

ϕ2
i , ϕi

)

∈ �2 (8)

with potential energy and displacement of the ith particle
as components can be constructed from the ϕi. This form

of equation (8) is motivated by the fact that it allows to
express the potential energy function equation (5) by the
empirical mean SN (X) = (zN , mN ), where

zN (ϕ) =
1
N

N∑

i=1

1
4

ϕ4
i −

1
2

ϕ2
i , (9)

mN (ϕ) =
1
N

N∑

i=1

ϕi. (10)

The associated macroscopical variables x = (z, m) are the
mean potential energy per particle z and the mean mag-
netization (or displacement) per particle m.

Then, following equations (3) and (4), the entropy of
the non-interacting ϕ4-model can be written as

s̃(z, m) = −tzz − tmm + ln
∫ +ϕc

−ϕc

dϕ etmϕ+tz( 1
4ϕ4− 1

2ϕ2),

(11)
where tz = tz(z, m) and tm = tm(z, m) are obtained by
solving the conditional equations

z =
1
4

ω4(tz , tm) − 1
2

ω2(tz, tm),

m = ω1(tz , tm), (12)

containing the integrals

ωk(tz , tm) =

∫ +ϕc

−ϕc
dϕϕk etmϕ+tz( 1

4ϕ4− 1
2ϕ2)

∫ +ϕc

−ϕc
dϕ etmϕ+tz( 1

4ϕ4− 1
2ϕ2)

. (13)

We let ϕc tend to infinity in the following.
Solving equation (12) for tz and tm seems not feasible

analytically. However, besides a numerical solution (see
Fig. 1), some general properties of s̃(z, m) may be of in-
terest. From large deviation theory we know that s̃(z, m)
is a concave, infinitely many times differentiable func-
tion. Its domain can be determined by the following ar-
gument: the energy V (ϕi) = 1

4 ϕ4
i − 1

2 ϕ2
i of any single

particle is not bounded above, but it is bounded below
by − 1

4 . Therefore also the mean potential energy z is re-
stricted to the interval [− 1

4 ,∞[. For any value of z � 1
4 ,

there exists a maximal and a minimal value of the mag-
netization mmax(z) = −mmin(z) which is attained when
ϕi = ϕj for all i, j. So mmax/min(z) is determined by
z = 1

4 m4
max/min− 1

2 m2
max/min. Starting from a microstate

with (z, mmax), we can always find another microstate
with m ∈ [−mmax, mmax] by changing the sign of an ar-
bitrary fraction of the values of the ϕi. For an illustration
of the domain of s̃(z, m) see Figure 1. For any fixed value
of z � 1

4 , the maximum of s̃ with respect to m is located
at zero magnetization.

3.2 The ϕ4-model with mean-field interaction

Turning to the study of the interacting model, we can
now profit from our particular choice of the random vari-
ables Xi in equation (8), resulting in the macroscopic vari-
ables (z, m). From the form (5) of the potential energy
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Fig. 1. Entropy s̃(z, m) (left plot) and its domain (right plot, gray hatched area) of the ϕ4-model without interaction from a
numerical evaluation of equation (11).
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Fig. 2. Entropy s(v,m) of the mean-field ϕ4-model for coupling constant J = 1 (left plot) and its domain (right plot, gray
hatched area). s(v,m) is obtained by a deformation (variable transformation) of the entropy s̃(z, m) of the non-interacting
model (see Fig. 1). Below a critical value vc of the potential energy v, the maximum of s with respect to the magnetization m
is located at a non-zero value of m.

function V , the mean potential energy per particle can be
written as

vN (ϕ) = zN (ϕ) − J

2
mN (ϕ)2, (14)

and for the corresponding macroscopic variable v the
equality

v = z − J

2
m2 (15)

holds. As a consequence, the entropy s(v, m) of the mean-
field ϕ4-model is obtained from the entropy of the non-
interacting model by a simple transformation of variables,

s(v, m) = s̃

(

v +
J

2
m2, m

)

. (16)

A plot of the resulting function is shown in Figure 2. For
large enough fixed values of the potential energy v, the
maximum of s with respect to m is again located at zero
magnetization. Below a critical value vc of the potential
energy, however, this is not the case anymore, indicat-
ing the occurrence of a phase transition. The transition is
found to be a continuous one, and vc is determined by a
change of curvature of s with respect to m along the line
of zero magnetization,

∂2s(vc, m)
∂m2

∣
∣
∣
∣
m=0

= 0. (17)

From the results of Section 3.1, the critical potential en-
ergy vc in dependence of the coupling constant J can be
written as

vc(J) =
1
J − 1

4 tzc(J)
, (18)

where tzc is defined implicitly by

J tzc ω2(tzc , 0) = −1. (19)

It follows immediately that vc(1) = 0 and, since tz < 0,
that vc(J) > 0 for all J > 0. The integral ω2(tzc , 0) in
equation (19) can be rewritten in terms of modified Bessel
functions of the first kind Ik, yielding

ω2(tz, 0) =
1
2

⎛

⎜
⎜
⎝1 +

I− 3
4

(

− tz
8

)

+ I 3
4

(

− tz
8

)

I− 1
4

(

− tz
8

)

+ I 1
4

(

− tz
8

)

⎞

⎟
⎟
⎠ . (20)

This allows to derive asymptotic expansions of vc(J) for
small and large positive J , respectively, from the known
expansions of these Bessel functions.

Small J > 0: inserting the asymptotic expansion of equa-
tion (20) for large negative tzc into equation (19), solving
for tzc(J) and substituting into equation (18) finally yields

vc(J) = −1
4

+
1
2

J + O(J2). (21)
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Fig. 3. Critical energy vc as a function of the coupling con-
stant J from numerical computation (dots), confronted with
the two asymptotic expansions (21) and (22).

Large J > 0: analogously, an expansion of equation (19)
for small negative tzc yields an expression for the critical
energy in the limit of large J ,

vc(J) = a2J2 −
(

2 a2 − 1
4

)

J

+
(

5 a2

4
− 3

8
+

1
64 a2

)

+ O
(

1
J

)

, (22)

with a = Γ (3
4 )/Γ (1

4 ) ≈ 0.338.
Together with the numerical result from the evaluation

of equations (18) and (19), these two asymptotic expan-
sions are plotted in Figure 3.

4 Conclusions

The microcanonical entropy s(v, m) as a function of the
potential energy v and the magnetization m of the mean-
field ϕ4-model has been calculated using a large deviation

technique. For such long-range interactions, and in con-
trast to standard thermodynamics, the entropy need not
be a concave function. In fact, for a ferromagnetic coupling
J > 0, a non-concavity in s is found, and therefore, when
comparing this result to the canonical free energy f(T, h)
as a function of the temperature T and the magnetic field
h, nonequivalence of ensembles is observed. For any fixed
value of v above a critical energy vc, the maximum of
s(v, m) with respect to m is attained at m = 0, whereas
below vc it is attained at m �= 0, corresponding to a con-
tinuous order phase transition at vc. An exact, implicit
expression for the critical energy vc(J) as well as expan-
sions for small and large positive J are derived.

Maximizing s(v, m) over m gives a concave entropy
function

ŝ(v) = max
m

[s(v, m)] , (23)

showing ensemble equivalence when compared to the
canonical free energy f̂(T ) = maxh[f(T, h)]. In fact, the
critical energy vc(J) from our microcanonical calcula-
tion corresponds to the critical temperature Tc(J) of the
canonical result reported in [5].
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